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Abstract

In recent years polynomial solvers based on algebraic
geometry techniques, and specifically the action matrix
method, have become popular for solving minimal prob-
lems in computer vision. In this paper we develop a new
method for reducing the computational time and improv-
ing numerical stability of algorithms using this method. To
achieve this, we propose and prove a set of algebraic con-
ditions which allow us to reduce the size of the elimina-
tion template (polynomial coefficient matrix), which leads
to faster LU or QR decomposition. Our technique is generic
and has potential to improve performance of many solvers
that use the action matrix method. We demonstrate the ap-
proach on specific examples, including an image stitching
algorithm where computation time is halved and single pre-
cision arithmetic can be used.

1. Introduction

Since the introduction of the Grobner basis methods to
computer vision by Stewenius [17, 15], numerous prob-
lems in geometry have been expressed as polynomial sys-
tems and solved. Minimal problems are particularly impor-
tant in structure from motion, absolute pose estimation and
feature-based image registration (stitching) because they
construct hypotheses from minimal data, which, in turn,
minimizes the probability of including an outlier in a hy-
pothesis of a RANSAC-based process [7, 14]. Before the
proliferation of these solvers researchers often relied on lin-
ear algorithms which needed larger than minimal sets of
points and hence considerably longer and less robust sam-
pling process in RANSAC.

The first efficient solver for a minimal problem in com-
puter vision, introduced by Nister [13] for the five-point rel-
ative pose, used a hand-crafted Grobner basis solver. Since
then Grobner basis solvers were devised for a number of
minimal problems, such as the solutions to autocalibration
of radial distortion [10, 6], relative pose with unknown focal
length [1], and infinitesimal camera motion [16]. Panoramic

image stitching with unknown focal length has been solved
[2] as well and will serve as the main demonstration of
our approach. Some non-minimal problems have also been
solved, such as optimal three-view triangulation [17, 3].

Since its introduction, several improvements to the
Grobner basis method (also known in the community as the
action matrix method) have been devised to address its nu-
merical shortcomings [4] and ease of use [8]. While the
action matrix method has been able to provide satisfactory
(and in many cases the only) solutions to a range of prob-
lems, it still suffers from two main drawbacks: computa-
tional complexity and numerical accuracy.

Once an elimination template for a problem has been
constructed, the main computational steps of the action ma-
trix approach are: matrix decomposition (such as LU or
QR) of a polynomial coefficient matrix in order to express
one set of monomials in terms of another and construct the
action matrix, and an eigenvalue decomposition of the ac-
tion matrix to find the solutions. The size of the eigenvalue
problem is typically related to the number of solutions, so
the computational complexity of that part cannot be signif-
icantly reduced. The matrix used in the LU decomposition
typically comes out of the structure of underlying problem
and can be quite large. In this paper we show that un-
der some conditions, it is possible to reduce significantly
the size of this matrix while guaranteeing that the algebraic
structure of the problem is not affected. Since matrix de-
compositions are typically O(n?) operations, a reduction in
its size produces a significant performance gain.

The numerical stability issues with the action matrix
method are also well known. Several methods have been
proposed to address this problem directly, such as using a
redundant solving basis and basis selection by SVD or QR
decomposition [4], but the underlying problem is the size
of the LU or QR decomposition, and matrix conditioning
issues associated with it. We will consider a specific prob-
lem of 3D panorama stitching with unknown focal length
and radial distortion to demonstrate experimentally that af-
ter using our method to reduce the size of the matrix decom-
position, numerical accuracy improves significantly. We
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show that the improved method is accurate even with single-
precision arithmetic, which makes a fast implementation on
a smartphone possible.

The effectiveness of our approach is tested on real im-
agery. We will show that in the case of RANSAC-based
image stitching, our improved template can achieve good
single-precision accuracy, while the state-of-the-art method
fails to produce a solution due to round-off errors.

2. The Action Matrix Method

We will briefly outline the action matrix method to intro-
duce the notation (see also [5, 9]). Let F = {fi...f,,} be
a set of polynomials in variables x = z; ...x;. The poly-
nomials F' generate an ideal I, and we assume there exists
a finite-dimensional quotient space R[x]/I, thus the system
F has a finite number of zeros. The aim of the action matrix
method is to construct a matrix in the quotient ring space
that multiplies polynomials by x, i.e. matrix A such that
rpv! X = ATvT  Xp, where v X5 € R[x]/I and X5 is
a monomial basis for R[x]/I. The solutions to F' = 0 are
extracted from the eigenvalues of A. Since this expression
is valid for any polynomial in the quotient space we obtain

l’kXB = ATXB, (1)

which suggests that we can construct the action matrix by
finding a set of polynomial equations which express the
monomials x; Xz in terms of the basis monomials.

We identify the basis, required and extra monomial sub-
sets. The basis monomials B constitute a linear basis for
the quotient ring R[x]/I (although B can include other
monomials when the redundant solving basis method is
used, see [5], Section 4), and the required monomials are
R = z;B \ B. The extra monomials £ are the remaining
monomials.

The solver generation usually proceeds as follows: the
initial polynomial system F' is extended with additional
equations from the ideal I/ = (F'). These equations are
found by multiplying the equations from F' by monomials,
starting with lowest order. The final system has the follow-
ing form

CX =0, 2)

where C' is a matrix of polynomial coefficients of size n x m
and X is the vector of all monomials in the extended system.
We rearrange the columns of the system as follows

Xe
CX=[Ce Cr Cs]| Xr | =0 3
X5

If a sufficient number of polynomials was added to the
original system F', the action matrix can be found by per-
forming LU decomposition of C'. The starting point for our

optimization is such a system with basis, required and ex-
tra monomials identified. We refer to this as an elimination
template.

3. The Conditions for Template Simplification

First, we show under what circumstances we can sepa-
rate the system C'X into two sets of columns and stay in the
ideal after elimination of one of the sets. This is a technical
condition required for Lemma 2. We denote by C\ ;X ; the
system CX with column c; and the corresponding mono-
mial x; removed.

Lemma 1. Let C be a full-rank matrix of polynomial co-
efficients and X a vector of monomials, such that CX is a
set of n polynomials which generate an ideal I. Let c; be a
column of C. Let C\j = LU be the LU decomposition of
C\;. Then the polynomials

UX\J + L_ICJ‘XJ' (4)
are also in 1.

Proof. The matrix L1 is a product of elementary lower
triangular matrices (see [12] p.142), and thus the transfor-
mation L represents only row operations. Since applying
row operations to C' will keep the equations in the ideal, the
following statements are true:

CXel
C\;X\j +cx; €1
LUX\; +cjx; €l (5)
L™YLUX\; +cjx;) €1
UX\;+ L 'c;x; €1,
which is the needed result. O

This lemma will be used to show that the equations stay
in the ideal even after certain columns are removed. We now
show that given C) it may be possible to compute the LU de-
composition of a matrix smaller than C'. We will now state
and prove a condition under which we can remove a row
and a column of C and still maintain the properties needed
for successful elimination.

Lemma 2. Ifthere exists a column c; of the polynomial co-
efficient matrix C that satisfies the following two properties:

1. It corresponds to one of the extra monomials Xg, i.e.
Cj € Ce
2. It can be expressed as a linear combination of the first

m — |R| columns

then the matrix C\; can be used to expressing the required
monomials R in terms of basis monomials B via its LU de-
composition.
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Proof. The need for property 1 is clear since discarding a
column corresponding to either a required or basis mono-
mial will result in the corresponding terms missing from
the equations.

To show the sufficiency of property 2, let us move c; to
the right-hand side in the original system:

Xenj
[Coy Cn Ca]| Xn
X5

= —CjX;. (6)

After LU factorization of the left-hand side matrix C\j =
LU the system becomes

0 UR 052 X'R = —Cij s (7)

X o
L[ Us\j Cr1i Cgi ] £\
X5

where Ug\ ; and Ug are upper-triangular matrices. Multi-
plying by L~! from the left, we obtain

X
Usyj Cri Cgi L
{ 0 Ur Cpg §Z =X @

Where the polynomials formed by the rows belong to the
original ideal by Lemma 1.

Since we need exactly |R| equations where the basis
monomials are expressed in terms of required monomi-
als, the last |R| elements of the vector L~ ¢;X¢; must be
0 (then the corresponding equations will not include any
terms with x;). Let us show that this is implied by property
2.

Let us rewrite property 2 as

C; = a1c1+...+aj_1cj_1—|—a]-+1cj+1+...+am,m|cm,|m,

©))
where c;, are the first m — |R| columns of C\ ;. The lower
triangular matrix L~! acts on cj, as follows: it annihilates
elements below k (since L~ C\; is an upper triangular ma-
trix). Thus the right hand side of the equation is

o O

L_IC]'X]' =a; Xj+ ...+ am_ R x;, (10)

0

where the last vector has zeros in the last |R| positions. [

The above lemma allows construction of a smaller ma-
trix on the left-hand side of the system (2) by moving terms
to the right-hand side and guarantees that the right-hand side
will be zero in the last |R| equations.

While removing whole rows (equations) will keep the re-
mainder in I, the ideal generated by the resulting set will be
smaller if the lowest order generators are removed. We can
now define excess columns as well as excess row-column
pairs, removal of which will not affect the elimination.

Definition 1. An excess column c; of C' is a column that
satisfies Lemma 2, and an excess pair of C' is a row r; of
C and a column c;, such that c; is a column of C with r;
removed that satisfies Lemma 2.

The proposed optimization of elimination templates will
make use of the Lemma 2 to find excess columns and pairs.
At this point it is clear how we should proceed: we will
first test each column to see if it can be safely moved to the
right-hand side of the equation CX = 0 and then, when no
excess columns are found, we test all row-column combina-
tions. The progressively smaller matrix will retain the full
left and right hand sides, such that at any point all the equa-
tions in it are in the ideal. Since we will be operating with
specific instances of the problems (symbolic elimination is
impossible for most templates), we will have to verify the
resulting template thoroughly for numerical stability and re-
peat the process as necessary to achieve a good template.

We now proceed to illustrate this process step-by-step
with an example.

4. Example: Three-point Panorama Stitching

As an example, we demonstrate how to reduce the size
of the elimination template for the problem of estimating
panoramic stitching parameters in the case of unknown fo-
cal length and radial distortion [2]. In this problem we es-
timate the rotation between two views and the common fo-
cal length and radial distortion coefficient. We only present
the problem formulation and refer the reader to that paper
for solution details. Our optimization is implemented as a
modification of an existing implementation available from
Lund University. !

4.1. Polynomial Model

The two cameras have square pixels, zero skew and the
principal point in the center of the image, thus the calibra-
tion matrix K = diag(f, f, 1), where f is the focal length.
The two camera views also share a common origin in the
stitching scenario and thus P; = K[I 0] and P, = K[R 0],
where R € SO(3). We now arrive at the following relation
between world point U and image point u:

zzu = KU, zou = KRU, (11)

IThe code is found at http://www.maths.lth.se/vision/downloads/
/data/stitching3pt.zip. Our optimized code can be found at
http://www.cis.upenn.edu/ narodits/Site_3/Solver_Optimization.html.
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Figure 1. Structure of the template as described in [2].

where z; and zo are the depths. The dependence on the
depths can be removed by rewriting the constraints as

(K™ Mgy, K hagg)® (U, U0)

K tw 2K Tug 2 (U202
<K71UQJ‘,K71L12]€>2
| K~ ya; 2| K~ Tugg |2

12)

These constrains are augmented with radial distortion
model |v| = (1 + Av|?)|u|. The normalized image point
can now be expressed as

u~v+A000 03] (13)

By substituting (13) into (12), squaring to remove the
square roots and multiplying through by the denominators,
we obtain a polynomial in degree 3 in f2, and degree 6in \.
Using constraints from three point correspondences yields
a system with 2 equations and 18 solutions [2].

4.2, Eliminating Excess Columns

The template for this problem consists of 90 equations in
132 monomials, and is solved using the redundant solving
basis method and QR decomposition of a 90 x 100 matrix
in order to create a numerically stable basis. The structure
of the template is shown in Figure 1. It is arranged such
that C = [ C¢ Cr Cp |, where || = 100, |R| = 7
and |B| = 25. Thus the system has 25 solutions and will
be solved via eigenvalue decomposition of a 25 x 25 action
matrix.

We will now show how to use the results in Section 3 to
reduce the size of this template. One way to identify excess
columns present in the initial template is via Gaussian elim-
ination with partial pivoting. The eliminated matrix has the
structure shown in Figure 2. It is important to note at this
point that since symbolic elimination of such a large ma-
trix is not practical, the matrix structure above is from a

I
0 20 40 60 80 100
nz = 1884

Figure 2. Structure of elimination template after Gaussian elimi-
nation.

“typical” numeric example. While cancellation pattern and
structure of a symbolic Gaussian elimination will always be
the same (since the relationships between all matrix entries
are fixed), a numeric elimination may encounter problems
with precision (especially in the lower right part of the ma-
trix), and thus give different structure for different instances
of the problem. We must try many instances until a stable
row-echelon form of C' is found.

In the structure above we can immediately observe
columns which have zero pivots. These columns, namely
[19,28, 38, 39, 48,49, 58, 59, 60, 69, 70, 79, 80, 88], corre-
spond to excess columns and can each be expressed as a
linear combination of the previous, extra columns, and thus
by Lemma 2, they can be eliminated from the matrix. At
this point the template matrix is 118 x 90.

4.3. Eliminating Excess Pairs

For the second round of optimization, we will find excess
pairs by testing each row and column. This is accomplished
by systematically removing a row of C, and for each col-
umn corresponding to an £ monomial, computing the vector
L~'c;z;, as in equation (8) and checking if the R monomi-
als have zero coefficients. If the number of zeros is greater
than or equal to |R|, then the row is removed and the col-
umn is moved to the right-hand side. We repeat this pro-
cess on the resulting left and right hand side matrices until
a smallest size left-hand side matrix is found. Once again,
the numerical stability of this process is an issue, and a suf-
ficient number of instances must be tried in order to ascer-
tain the quality of the resulting template. This optimization
round allowed us to create a stable template of size 54 x 77
with QR decomposition being performed on a 54 x 45 ma-
trix. The structure of the optimized template is shown in
Figure 3. In Appendix A, we list the complete set of ex-
cess rows and columns which can be used to reproduce our
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Figure 3. Structure of the template after optimization.

results.
4.4. Numerical Stability

The numerical stability of the resulting template is veri-
fied in Figures 4 and 5. We observe that the performance is
almost identical in both the noise-free and noisy cases on a
large set of randomly generated configurations. In terms of
computational performance, the average QR decomposition
time decreased from 1.1ms to 0.24ms, which translates into
a doubling of overall performance when matrix inversion
and eigenvalue decomposition are taken into account.
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Figure 4. Noise free, double precision experiment for the three-
point stitch problem. Comparison of the orders of magnitude of
reprojection errors between solutions to 10° noise-free instances.
Reduced template is dashed red and the original template is solid
blue.

Aside from speed, the other significant advantage of our
new template is its numerical stability under single preci-
sion arithmetic. Due to the smaller size of our template,
the round-off errors are not as significant. The comparison

4500
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Figure 5. Noisy, double precision experiment for the three-point
stitch problem. Comparison of the orders of magnitude of repro-
jection errors between solutions to 10° instances. The points are
contaminated with 0.01 standard deviation noise in the normalized
image plane. The dashed, red plot was generated with the reduced
template and solid, blue with the original. The solutions obtained
by both templates are very close, which shows that we did not
compromise numerical stability of the algorithm by reducing the
size of the template.

of the two templates in single precision is shown in Fig-
ure 6. The original template is not usable in single-precision
arithmetic with a 4300 of 10000 cases failing to produce the
correct solution. In contrast, the reduced template failed in
only 224 cases. The single precision implementation used
single precision for QR decomposition, matrix division and
eigenvalue decomposition. It is clear that for the original
template, it is the 90 x 100 QR decomposition that turned
out to be unstable.

4.5. Experimental Results

Finally, we verify performance of the reduced template
on real images. In Figures 7 and 8 we show the panora-
mas generated with our new template with single precision
arithmetic. The procedure to generate these results was was
follows: 1) detect SIFT [11] features on the two images and
match them, 2) run a RANSAC process on the subsets of
the matches and output the best hypothesis, and 3) warp the
images using the hypothesis.

On the feature points shown, both double precision im-
plementations produced similar results, however, the single
precision implementations different dramatically. Of the
300 generated hypotheses, the original template failed to
find any solutions in 297 cases (the remaining 3 cases gave
wrong solutions) and the reduced template only had 43 such
failures (for the images in Figure 8).

Overall, we can conclude that the reduced template is
stable and can be applied to real-world images, even on sin-
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Figure 7. The matched SIFT features on the cell phone images and the resulting panorama generated with single precision arithmetic using
the reduced template and RANSAC. The performance was similar for the double precision in both templates, however, the single precision
original template did not produce a valid hypothesis after 200 iterations. No bundle adjustment or image blending was applied, hence the

panorama is generated with a single three-point hypothesis.

Figure 8. The matched SIFT features on high quality images and the resulting panorama generated with single precision arithmetic using

the reduced template and RANSAC.

gle precision hardware, such as a smartphone.

5. Example: Optimal Three-view Triangula-
tion

The problem of L2-optimal, three-view triangulation is a
classic problem that is solved by the action matrix method.
First solved by Stewenius et. al in [17] in 256-bit arithmetic,
this problem was revisited by Byrod et. al [3] and solved
with double precision arithmetic. With its 47-dimensional
linear basis, this problem is difficult to optimize, however,
we still manage to improve performance slightly. We base
our implementation on the freely available version from By-
rod. 2

5.1. Polynomial Model

The optimal three-view triangulation problem is not a
minimal problem (minimal number of views is 2), but it
is a classic problem solved by the action matrix method.
We briefly review the model. Given three camera matrices

2The code is at http://www.maths.Ith.se/vision/downloads/data/
optimal_tvt.zip

P; = [R; t;], and three corresponding image points u;, the
3D point U = [uy,uz,u3]” must be computed such that
it minimizing the objective function defined as the sum of
squared reprojection errors:

3
F(U) = d(P;U,w)*. (14)
i=1

The problem is simplified by setting all image points u;
to be at the origin, and adjusting the camera matrices to
compensate. This is done by rotating them around the cam-
era’s center of projection to get P, = [Ry,R; t|, where
Ry, € SOs is the rotation between u; and [0,0,1]T in the
camera coordinate system. The objective is now F(U) =
Z?:l F;(U), where reprojection errors F;(U) are given in
terms of the rows of the camera matrices P} = [Pt P2P?]T:
(PIUP 4 (P2U)?
(PPU)?
which is the squared length of the image vector after re-
projection.

Optimality requires that = 0 for each component u;
of U. After differentiating with respect to u;. When i # j,

F(U) = s5)

daF
dui
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Figure 6. A noise-free, single precision experiment for the three-
point stitch problem. The graph shows the comparison of the or-
ders of magnitude of reprojection errors between solutions to 10°
instances of the problem. The dashed, red plot was generated with
the reduced template and solid, blue with the original. This plot
demonstrates that only our reduced template can be used with sin-
gle precision since in about 4300 cases the original template fails
completely.

the derivative is [15]

dF; _ Pl(j)P'U+ P?(j)P?U
_ BUPA UL FGRU (16)

du n

J

where PF () is the jth element of PF. When i = j, we
have

ary _
de
1/, 1 2( .\ P2 1 2 2 2
(PLOPIU+ P2G) PO, = (PIUY + (PPU)
u?

J
a7

When these derivatives are written out in terms of u; for
j = 1...3 and brought under the same denominator to form

polynomial equations, we end up with 3 equations of degree
6.

5.2. Template Optimization

After the addition of a sufficient number of equations, the
elimination template for this problem has size 225 x 209.
We reduced the size to 154 x 204. We begin by rear-
ranging the columns of the coefficient matrix such that
C = [ Ce Cr Cp ] We then remove rows, one-by-
one and test the template for stability, as suggested in [8].

This allows us to remove rows

[1...43,49,122,124,125,127,128, 130,
133,167,169, 170,171,172, 199, 200, 202, 204,
206, 209, 210, 213, 214, 218, 222].

We now apply our method to remove five additional excess
pairs from the resulting matrix. We remove rows [21 , 79,
80, 81, 117], and columns [1, 2, 3, 55, 56]. The number
of pairs removed is only 5, however, this problem has 50
basis monomials and 31 required monomials, so the task of
choosing Lemma 2 compliant columns is difficult. It is still
possible that a smaller template lurks inside this one, but
finding it might be a difficult combinatorial problem.

We use simulated data to show once again that this re-
moval has little effect on the results in double precision
arithmetic. We plot the results in Figures 9 and 10. Sin-
gle precision appears to be far out of reach for this problem.

= Original template
~ = = Optimized template
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Figure 9. Optimal three-view triangulation experiment with no
noise. We compare the orders of magnitude of error in triangu-
lated 3D point log, (]| X — X||2). We used the standard basis
(tvt_solve_std.m script), and not the QR method. Note that due to
the nature of the problem, the error is much higher than in the case
of 3D panorama stitching.

6. Example: The 3+1 Problem

We have also applied our method to the problem of es-
timating relative pose in the case of two known orientation
angle, which we call the ”3+1 problem.” In our technical re-
port we present an action matrix based solution to the prob-
lem and optimize it using this method. In that case, the
template size goes from 36 x 46 to 21 x 25. The exact mod-
els, the numeric performance (including the single precision
case) and applications are discussed in the report. 3

3The report and code are at http://www.cis.upenn.edu/ narodits/
Site_3/3+1.html.
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Figure 10. Optimal three-view triangulation experiment with
noise. We compare the orders of magnitude of error in triangu-
lated 3D point log,, (|| X — X||2) between the two templates. The
standard deviation of the noise in the points in camera coordinates
was 0.01. The results are for the standard basis (tvt_solve_std.m
script), and not the QR method. The results are again very similar
despite being computed with a smaller template.

7. Conclusions and Future Work

In this paper we developed a new method for reducing
the size of the action matrix template and proved some prop-
erties of the columns of the template matrix. We showed
that under some conditions, rows and columns of the matrix
can be removed a priori, resulting in improved speed.

We produced a real example of algorithms which bene-
fits substantially from our approach both in terms of speed
and numerical stability, namely the three-point panoramic
stitching and the “3+1” algorithm. We believe that this
generic approach can be used on other algorithms as well,
making the action matrix method an even more attractive
way to solve geometry problems in computer vision.

We will investigate if this method can be improved by
applying Lemmas 1 and 2 at the template generation stage
with the coefficients in Z/pZ, yielding an exact solution.
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A. Three-point Panoramic Stitching Excess
Rows and Columns

In this appendix we list the rows and columns removed
from the original 90 x 132 matrix constructed in the func-
tion setup_3pt.m of the aforementioned code. After arrang-
ing the matrix as C' = [ Ce Cr Cp ] we remove the
columns [1...5, 9...14, 18...23, 27...32, 37...42,

47...52, 57...62 68...72, 78...80, 88] and rows
[1...30, 73...78]. After this, the elimination proceeds as
before, except we must adjust the indices m__ind to com-
pensate for a smaller matrix.
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